(3 Hours)

Total Marks: 80

N.B.:	(1)	Question	No.1	is	compulsory
	(2)			10	compulsory

- Answer any Three out of remaining Five questions. (2)(3)
- Use graph paper wherever necessary.
- (4) Assumptions made should be clearly stated.
- Assume any suitable data wherever required but justify the same. (5)

(a) Answer the following (Any Three):

Hybrid electric drivetrain topologies.

12

- Compare the performance of ICE based conventional vehicles and Electric Vehicle.
- (ii) Explain the general configuration electrical subsystem of an Electric Vehicle.
- Explain the evaluation of EV performance using a drive cycle. Draw the SAE-1227 A driving cycle and explain.
- (iv) Calculate the Ahr capacity of a Lead Acid battery pack comprises of 20 barreries each of 12V used for an EV for the following specifications: EV drive average power requirement: 185whr/km and distance in kilometres to be travelled in a single charge = 100km.
- (b) State the historical background of EV/HEVs technology in brief. Describe the current state of the art of EV/HEVs technology along with technology challenges associated it.
- (c) What is Peukert capacity of a battery? What is its significance in EV applications? Calculate the Peukert capacity of a 135Ahr battery with C10 (10 hr) rating (Peukert Coefficient is 1.2)
- (a) Compare and differentiate between the battery electric vehicle (BEV), hybrid EV (HEV) and Plug-in HEV (PHEV) technologies. (b) Define the Hybridness (H) for a hybrid EV. Classify the HEV based on

· hybridness. (c) Describe the power flow control in a Parallel Hybrid and Series Parallel 10

Q.P. Code: 734700

10

20

2

- 3. (a) A DC-DC converter used in a two wheeler EV drive is fed from a battery pack of 36V produces output voltage V₀ = 60V at output power P₀ = 400W. If the converter is to be operated in current control mode, then derive the open loop, and closed loop transfer function of converter. Design a PI controller for closed loop operation of this converter with components L = 3mH, r_L (resistance of L) = 0.05Ω, C= 470μF and f_s = 20kHz.
 - (b) Calculate the net energy transferred in an ultra-capacitor (UC) of 100F used in an EV drive when the voltage applied across the UC is varied as follows: The potential difference is varied uniformly from 0 to 60 V in 10 seconds. It is then maintained at 60 V for 20 second, and then decreased uniformly to 24V, in 70 seconds. Plot a graph, showing the variation of current during the 100 seconds of operation, as described above.
 - Compare the characteristics and performance of batteries, and ultra 4 capacitors for an EV application.
- 4. (a) What are the various components which contribute to the total tractive effort (F_{TE}) needed in EV/HEV? Describe each of them in brief and also derive the expression for F_{TE} by means of electric vehicle performance modelling.
 - (b) Describe the following in brief:
 - (i) Use of renewable energy sources in EV / HEV / PHEV.
 - (ii) Hybridization of different energy sources for EV/ PHEV applications.
- (a) For an induction motor to be used as EV drive, explain a typical power converter topology and control strategy which can be adopted for EV application.
- (b) State and explain the design considerations for the battery, electric motor and power converter to be used in (i) A small utility EV (four wheeler)
 (ii) A small scooter (two wheeler) EV.
- 7. Write a short note on (Any Three):
 - (i) Electric motors used for EV and HEV drives
 - (ii) Energy management strategies used in EV / HEV / PHEV
 - (iii) Battery charging methods used in EV / PHEV
 - (iv) EV battery specifications and their significance in EV design.