5

5

5

10

QP CODE: 27293

(3 Hours)

Marks: 80

NB: (1) Question No.1 is Compulsory.

- (2) Attempt any three questions from remainning.
- (3) Assume suitable data (mention the same) and use semi log papers wherever necessary.
- (4) Figures to the right indicate full marks.
- 1. Attempt any four of the following:
 - (a) Explain what you mean by compensator. Explain lag and lead compensator with the help of electrical network and pole zero plot.
 - (b) Explain issues in implementing the industrial PID controller.
 - (c) Briefly describe the configuration of an observer.
 - (d) Explain PLC Program execution along with steps in processor scan cycle.
 - (e) Explain the start and stop interlocking circuit in PLC programming with the help of example.
- (a) Design a lead compensator for the unity feedback system with

 $G(s) = \frac{100K}{s(s+36)(s+100)}$ to yield 20% peak overshoot and velocity error constant of 40 with a peak time of 0.1 second.

- (b) For the plant $G(s) = \frac{100(s+10)}{s(s+3)(s+12)}$ design the phase-variable feedback gains to yield dominant pole pairs at $-10 \pm j \ 10.475$
- 3. (a) For unit step, ramp and parabolic inputs, find the stedy state error for the digital control system shown below: $G1(s) = \frac{10}{s(s+1)}$ Sampling interval T = 0.1

(b) Given the plant shown in figure, what relationship exists between b1 and b2 to 5 make the system uncontrollable.

- (c) Explain the proportional band (PB). What is the proportional band setting in a hydraulic process where the controller input variable, e(t) was a mechanical displacement of range $e_R = 1$ cm, and the effective controller ouput, u(t) was a pressure of range uR = 2 bar. At a given setting of the controller, 0.1 cm of change in e(t) caused 0.5 bar change in control output, u(t).
- 4. (a) Design an integral controller for the plant which is represented in phase-variable 10 form $G(s) = \frac{1}{s^2 + 5s + 3}$ to yield a step response with 10% overshoots, a settling time of 0.5 second and zero steady state error.
 - (b) Find the closed loop digital transfer function of unity feedback system having 10 transfer function $G_1(s) = \frac{27K}{s(s+27)}$ connected in cascade with z.O.H. circuit. Also find whether the system is stable or not for K=20 and K=100 respectively. [T = 0.2]
- 5. (a) Explain the modeling of digital computer in detail
 (b) Explain in detail timer instructions of PLC.
- 6. (a) Draw and explain the PLC ladder diagram for manufacturing of 5 mH and 10 mH inductor coils. When a 5 mH inductor is produced: the machine makes 400 revolutions to wind the coil. If the 10 mH inductor is produced, the machine makes 800 revolutions before stopping.
 - (b) Explain AC input module of PLC.
 - (c) Explain AND, OR, NOT, NAND and NOR relay ladder logic circuits operation.