Q. P. Code: 622701

		(3 hours) Total Marks: 80	
N.B.	3	. Question No. 1 is compulsory . Attempt any three out of remaining . Assume suitable data if necessary and justify the assumptions . Figures to the right indicate full marks	
Q1	A	Compare IIR systems with FIR systems.	0.5
	В	State whether $x[n] = \sin(n \pi/3)$ is an energy or power signal with proper	0.5
		justification.	
	С	If $x[n] = \{1,2,2,1,3,1\}$ is a periodic signal. Plot it in circular representation for i)x [-n] ii)x [n-2] iii)x [n+2] iv)x [-(n-2)] v)x [-(n+2)]	0.5
	D	State BIBO stability criterion for LTI systems. Determine the range of values of 'p' and 'q' for the stability of LTI system with impulse response: $h[n] = p^n \qquad ; n < 0$ $= q^n \qquad ; n \ge 0$	05
Q2	A	Check whether the system y[n] = a ⁿ u[n] is: i) Static or Dynamic ii) Linear or Non-linear iii) Causal or Non-Casual iv) Shift variant or Shift Invariant	10
	В	Check the periodicity of the following signals and if periodic, find their fundamental period. i) $\cos (n/6) \cdot \cos (n \pi/6)$ ii) $\sin (2\pi n/3) + \cos (2\pi n/5)$	10
Q3	A	Determine the output response of the LTI system using time domain method ,whose input is $x[n] = 3 \delta[n+1] - 2 \delta[n] + \delta[n-1] + 4 \delta[n-2]$ and $h[n] = 2 \delta[n-1] + 5 \delta[n-2] + 3 \delta[n-3]$.	10
	В	If a continuous time signal x (t) = $\sin (2\pi \times 2000t) + 2 \sin (2\pi \times 1000t)$ is sampled at 8000 samples /sec. Find out the 4-point DFT of it. Sketch the phase and magnitude spectrum.	10
Q4	A	Explain any five properties of DFT.	10
	В	Compute linear convolution of the causal sequences $x[n] = \{2,-3,1,-4,3,-2,4,-1\}$ and $h[n] = \{2,-1\}$ using overlap save method.	10
	5		

[TURN OVER]

Q5	Α	Compute circular convolution of the causal sequences $x[n] = \{1,-1,1,-1\}$ and	1
		$h[n] = \{1,2,3,4\}$ using radix- 2 DIT FFT method.	S
	В	If the DFT of x[n] is X (k) = {2,-j3,0,j3} using DFT properties, find: i) DFT of x[n-2] ii) Signal energy iii) DFT of x*[n] iv) DFT of x ² [n] v) DFT of x[-n]	1
Q6	A	Explain the significance of Carl's Correlation Coefficient Algorithm in digital	1
		signal processing. Evaluate Carl's Coefficient for two causal sequences $x[n] = \{2,4,4,8\}$ and $y[n] = \{1,1,2,2\}$.	
	В	i) Calculate the percentage saving in calculations in a 64 point radix-2 FFT systems with respect to the number of complex additions and multiplications required, when compared to direct DFT system.	5
	В	ii) Write a detailed note on DSP processor.	5