Q.P.Code: 37774

(4 Hours)

[Total Marks: 80]

1. O	uestion	No	1 is	Com	pulsory
------	---------	----	------	-----	---------

- 2. Attempt any three questions out of remaining questions.
- 3. Use of IS CODES is permitted.
- 4. Assume suitable data if required and state it clearly.
- 5. All sketches must be drawn on drawing sheet.

Q 1 Attempt following questions.

a. Explain different types of reinforcing steel used in beam, column, two way slab and isolated footing with neat sketches
b. Write a short note on design of staging for a overhead water tank
c. Explain any three general guidelines to be considered while planning a staircase.
d. Explain the reason for scissor joint in staircase reinforcement.
04

Q 2 Following figure shows the framing plan of a residential building. Floor to floor height is 3.2 m. Grade of concrete is M 20 and steel is Fe 415. All columns are 300mm ×300mm in size

TURN OVER

Figure 1

	a)	Design the slab S1	08
	b)	Draw the reinforcement details of slab S1	02
	c)	Design beam B1	08
	d)	Draw the reinforcement details of beam B1.	02
		Beam B1 is provided with 8mm diameter stirrups @150 mm c/c throughout	
		the length.	
Q 3	a)	A building having floor to floor height as 4 m is to be provided doglegged	14
		staircase. Grade of concrete is M 20 and steel is Fe 415. Design the staircase.	
		Draw the plan showing flight details	03
		Draw Reinforcement details in a flight	03
Q 4		Design by approximate method a rectangular tank 4 m × 4.5 m in plan and 4	16
		in height. Tank is resting on firm ground. Grade of concrete is M25 and steel	
		is Fe 415.check the design for safe stresses.	
		Design the following	
		a) Side walls	
		b) Base slab	
		Draw neat sketches showing the reinforcement details	04

A reinforced concrete cantilever retaining wall is supporting a backfill of height 4.8 m above ground. Take density of soil = 18 kN/m³. Angle of repose =30⁰. SBC of soil = 150 kN/m³ and coefficient of friction between concrete and soil =0.40. Grade of concrete is M20 and steel is Fe 415.

a) Design the retaining wall and show all stability checks.

16

- b) Draw reinforcement details of toe and stem with curtailment of reinforcements.
- Q 6 a) Following figure shows the layout plan of the columns of a building. Design a 1 raft foundation for the building. Take net bearing capacity = 80 kN/m³. Each Corner column carries a load of 700 kN. Central columns carry load of 1000kN.

Draw a neat sketch showing reinforcement details

03

Figure 2

- b) Suggest types of foundations (with neat sketches) that can be provided for 05 following conditions.
 - (1) Foundation of column close to boundary
 - (2) Multistoried building on low bearing capacity soil.