	(A)		-
(3Hours)	~07676V0 M	ax Marks=8	ſ

05

10 10

- Note 1. Question No.1 is compulsory
 - 2. Attempt any three questions from remaining five questions.
 - 3. Assume any suitable data where ever required.
 - 4. Figures to the right indicate full marks.

Q.1 Attempt any **four**

a.	What is E-waste? How they are managed?	05
b.	Explain significance of chemical properties of solid waste.	05
c.	What are the different characteristics of hazardous waste?	05
d.	Estimate density of solid waste sample from the given data.	05

Components % by weight Typical

Components	% by weight	Typical density(kg/m3)
Food waste	25	290
Glass	5 5 5	195
plastic	15	65
Paper		85
Wood	25	240
Ferrous Metal	2	320
Miscellaneous	15	240

- e. What is called as optimization of collection route?
- Q.2 a. Explain the factors affecting generation rate of solid waste. How solid waste 10 generated can be reduced prior to minimum utilization of natural environmental resources.
 - b. Estimate the energy value of typical residential Municipal Solid waste with the average composition C₇₆₀H₁₉₈₀O₈₇₅N₁₃S₁.
- Q.3 a. With neat sketch explain collection of gases from sanitary landfill by two methods
 - b. Explain Hospital Solid waste with
 - 1)Categories of waste
 - 2)Quantities and composition
 - 3)Storage
 - 4)Transportation
 - 5)Treatment and disposal

Paper / Subject Code: 42008 / Elective 4) Solid Waste Management

- Q.4 a. List the Engineering consideration involved in the implementation of 'Material 10' Recovery Facilities'. Give the flow diagram for material recovery facilities for processing yard and other green wastes.
 - b. Determine the amount of air required to oxidize one tonne of waste with the chemical composition C₅₀H₁₀₀O₄₀N₁.

$$C_aH_bO_cN_d + (\frac{4a+b-2c-3d}{4})O_2 \rightarrow aCO_2 + \frac{b-3d}{2}H_2O + dNH_3$$

- Q.5 a. Why transfer stations are necessary? Explain any two types.
 - b. Estimate the theoretical volume of methane gas that could be expected from 10 anaerobic digestion of one tonne of waste having the composition of C₅₅H₁₁₀O₃₅N₂.

10

$$C_a H_b O_c N_d + \left(\frac{4a-b-2c-3d}{4}\right) H_2 O \rightarrow \left(\frac{4a-b-2c-3d}{8}\right) C H_4 + \left(\frac{4a-b+2c+3d}{8}\right) C H_$$

- Q.6 Write short note on any four 20
 - a. Refuse Derived Fuel
 - b. Vermicomposting
 - c. Leachate control
 - d. Pyrolysis
 - e. Legal aspect of solid waste disposal
