[Time: 3 Hours]

[Marks: 80]

	N.B:	 Question no. 1 is compulsory. Solve any three questions from the remaining questions. Assume suitable data if required. Use of IS 1343 is permitted. 	V X / 0 X 3 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /
Q.1 a)	What is the nec concrete?	essity of using high strength concrete and high tensile steel in prestressed 0.	5
b)	b) Distinguish between pre-tensioned and post-tensioned members.		
c)	Sketch the typic single anchorag	al tensile stress distribution in an end block of post-tensioned beam with a 0.5 c.	5
d)	What are the ad	vantage of continuous members in prestressed concrete structures? 09	5
Q.2 a)	dia. Initially streets Estimate the fin $Es = 210 \text{ KN/m}$	beam 250mm wide and 300mm deep is prestressed by 12 wires each of 7mm ssed to 1200 N/mm ² with their centroids located 100mm from the soffit. al % age loss of stress using following data m ² and Ec = 35 KN/mm ² Relaxation of steel stress = 90 N/mm ² creep co- .6. Residual shrinkage strain = 3x10 ⁻⁴)
b)	of beam is 5m. th	a rectangular section 200 mm x 450 mm support udl of 10 KN/m. the effective span to be beam is concentrically prestressed by a cable carrying a force of 200 KN. Locate the line in the beam.)
Q.3	cable containing Assume modula Calculate the m a) Prestress	ving size 200mm x 300mm span 3m. the beam is prestressed by a straight five wires of 7mm dia. Stress to 1000N/mm^2 at an eccentricity of 50mm. It ratio $\alpha = 6$, Ec = 34 KN/mm ² and modulus of rupture is 5 N/mm ² . It is, deflection of the beam at the following stages. + self wt of the beam + self wt + imposed load of 10 KN/m cload)
Q.4 a)	50 mm. if fck =	prestressed concrete beam having size $200x400mm$ has an effective cover of 40 N/mm^2 , fp = 1600 N/mm^2 and Area of prestressing steel Ap = 500 mm^2 . imate fiexural strength of the section using IS 1343 code provision.	J
b)	an effective for	ving span 5m and size 230 x 450 mm is axially prestressed by a cable carrying e of 300 KN. The beam supports a total udl 20 KN/m including self wt. gnitude of the principal tension developed in the beam with and without the)

72845 Page 1 of 2

20

20

Q.5 Design a post tensioned roof girder to suit the following data

Effective span = 20mm

Live load = 10 KN/m

Dead load (excluding self wt) = 2 KN/m

Load factors for DL = 1.5

For LL = 2.0

Cube strength of concrete $Fcu = 50 \text{ N/mm}^2$

Cube strength at transfer $Fci = 50 \text{ N/mm}^2$

Tensile strength of cone = $ft = 1.7 \text{ N/mm}^2$

 $Ec = 34 \text{ KN/m}^2$. Loss ratio = 0.8.

Only check for minimum section modulus and check for prestressing force.

- Q.6 A continuous PSC beam ABC, AB = BC = 15m has a cross section 230mm x 400mm. The cable carrying an effective prestressing force of 400 KN is parallel to the axis of the beam and located at 100mm from the soffit.
 - a) Determine the secondary and resultant moment at the central support B.
 - b) If the beam support an imposed load of 10 KN/m. calculate the resultant stresses at top and bottom of the beam at B.
 - c) Locate the resultant line of thrust through beam AB.

72845 Page 2 of 2