MAY 2017

(REVISED COURSE) QP Code: 16461

2

2

		(3 Hours)	[Total Marks : 80
N.B.: (1)	Question No.1 is Compulsory.		
(2)	Answer any three from the remaining.		

- Each full question carries equal marks.
- (3)
- Assume suitable data if needed & state it clearly. (4)
- (5) Required tables from IS 456:2000 are given at the end.
- (a) Distinguish between One Way Slab & Two Way Slab. 1. 4
 - (b) Abeam (300 mm × 600 mm) is reinforced with 2 bars of 25 mm diameter. Find the Ultimate Moment of Resistance. Use Ultimate Load Theory. Use M20/Fe415. Assume the effective cover = 37.5 mm.
 - Discuss characteristic load & characteristic strength of materials. 4 (c)
 - Explain the Types of Shear Reinforcement. Drawneat sketches. (d) 4
 - Write a note on design of columns subjected to Compression & Uniaxial Bending. (e) 4
- 2. (a) A rectangular beam, having 200 mm width & 400 mm effective depth, is reinforced with 3 bars of 9 16 mm diameter Fe415 steel. Find the ultimate UDL (factored or design UDL) which the beam can safely carry over a span of 5m. Use M20 concrete
 - A simply supported rectangular beam of 8 m clear span carries a factored load of 45 kN/m over the (b) entire span. The beam is 230 mm wide & effective depth is 500 mm. It is reinforced with 6 bars of 20 mm diameter bars. Design the shear reinforcement using vertical stirrups only. The ends of the beam are not confined by the compressive reaction. Use M20 concrete & Fe415 steel. Sketch the details.
 - In a RCC member, the best way to ensure adequate bond is to: (c)
 - (i) Provide minimum number of large dia. bars (ii) Provide large number of smaller dia. Bars
 - (iii) Increase the cover for reinforcement (iv) Provide additional stirrups
- 3. A rectangular beam of size 230 mm width & 500 mm effective depth is subjected to a factored moment 9 (a) of 200 kNm. Find the reinforcement for flexure. Use M20 concrete & Fe415 steel.
 - Find the Limiting Moment of Resistance & Limiting Area of Steel for a T-beam, having flange width of 9 (b) 1600 mm, effective depth of 350 mm & flange thickness of 100 mm. The web width is 250 mm. Use M20 concrete & Fe500 steel
 - In Limit State Design of RCC, deflection is computed by using: (c)
 - (i) Initial tangent modulus (ii) Secant modulus
 - (iii) Tangent modulus (iv) Short term & long term values of Young's modulus

- 4. (a) Design a short square column to carry a safe axial load of 1600 kN. It is 4 m long, effectively held in 9 position & restrained against rotation at both ends (effective length 0.65L). Use M20 concrete & Fe415 steel. Show the steel details on sketches. Carry out the check for minimum eccentricity.
 - (b) A simply supported one-way slab of a public building has a clear span of 2.5 m & is supported on beams 230 mm wide. Design the slab if Live Load is 5 kN/m. Use M20 concrete & Fe415 steel. Show reinforcement details. Carry out check for shear. Other checks are not needed.

2

- (c) In Limit State Design of Concrete Structures, strain distribution is assumed to be:

 (i) Linear (ii) Non-linear (iii) Parabolic (iv) Parabolic & rectangular
- 5. (a) A rectangular beam section is (300 mm × 600 mm) overall. Concrete is M20 & steel is Fe415. 9
 Factored moment is 116 kNm, factored torsion is 46 KNm & factored shear is 95 kN. Find the reinforcement
 - (b) Design a slab for a room of a building, whose clear dimensions are (4 m × 5 m). The slab is supported 9 on walls of width 300 mm. The Live Load = 4 kN/m² & Floor Finish = 1 kN/m². Use M20 Concrete & Fe415 steel. Corners of the slab are not held down. Sketch reinforcement details. Serviceability checks are not needed.
 - (c) Limit State of Serviceability for deflection including the effects due to creep, shrinkage & temperature 2 occurring alter erection of partitions & application of finishes as applicable to floors & roofs, is restricted to.
 (i) Span/150 (ii) Span/200 (iii) Span/250 (iv) Span/350
- (a) Design a square footing of uniform thickness for an axially loaded column of (450 mm × 450 mm)size. 16
 The SBC of soil = 190 kN/m². Column carries a load of 850 kN. Use M20 concrete & Fe415 steel. Sketch the steel details.
 - (b) Draw the laboratory Stress-Strain curves & Idealized Stress-Strain curves (as per IS456:2000) for the 4 Concrete & the steel. Explain the same.

Table: Design Shear Strength of Concrete

required. Sketch the details.

100A/bd	≤ 0.15	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.5 & above
τ _c (MPa) for M20 concrete	particular constant	0.36	0.48	0.56	0.62	0.67	0.72	0.75	0.79	0.81	0.82

Table : Values of (k) for Solid Slabs

Overall Slab Depth (mm)	≥ 300	2 75	250	225	200	175	≤150
(k)	1.00	1.05	1.10	1.15	1.20	1.25	1.30

Table: Stress in compression steel, fsc(MPa) in Doubly Reinforced Beams

fy(MPa)	(d'/d)						
	0.05	0.1	0.15	0.20			
415	355	353	342	329			

Table: Bending Moment Coefficients for Slabs Spanning in 2 Directions at Right Angles, Simply Supported on Four Sides

Ly/Lx	1.2	1.3	1.4
αx	0.084	0.093	0.099
αу	0.059	0.055	0.051