(3 Hours) (Marks: 80

- **N.B.:** 1 Question **ONE** is **compulsory**.
 - 2 Attempt any **THREE** questions out of the **remaining**.
 - 3 **Figure** to the **right** indicate **full marks**.
 - 4 **Diagram** at appropriate places carries marks.
 - 5 Assume suitable **data** if **necessary**.
- 1 Write short note on:
 - (a) Sol- Gel processing.

(06)

(b) Condensed Phase Synthesis of nanostructures.

(07)

(c) Electronic effects of biomolecules-nanoparticle interaction.

(07)

- 2 (a) Explain in detail the Combustion Flame Synthesis method for Fullerene (10) with neat diagram of primary zone reactor in conjunction with secondary zone reactor.
 - (b) Describe the Laser Ablation synthesis methods based on pellet formation (10) for Carbon Nanotube preparation with neat diagram.
- 3 (a) Explain in detail counter diffusion and fullerene crystal formation at the (10) interface with neat diagram.
 - (b) Describe the characterization mechanism of Transmission Electron (10)

 Microscope with neat diagram.
- Calculate the volumetric rate, duct particulate flow rate in g/s, mg/s, µg/s (20) and ng/s and average concentration in lb/ft³, g/ft³, g/m³, µg/m³,ng/m³ of fluid flowing through a 2 feet by 4 feet rectangular parallelpiped. The velocity v(i,j) in ft/s and concentration c(i,j) in mg/m³ passing each of equal areas is provided as follows:

v(1,1) = 14	v(1,2) = 17	v(1,3) = 23	v(1,4) = 16	v(1,5) = 16
v(2,1) = 26	v(2,2) = 28	v(2,3) = 31	v(2,4) = 27	v(2,5) = 25
v(3,1) = 26	v(3,2) = 29	v(3,3) = 31	v(3,4) = 28	v(3,5) = 25
v(4,1) = 24	v(4,2) = 28	v(4,3) = 30	v(4,4) = 27	v(4,5) = 24
v(5,1) = 17	v(5,2) = 19	v(5,3) = 24	v(5,4) = 19	v(5,5) = 17
c(1,1) = 201	c(1,2) = 222	c(1,3) = 222	c(1,4) = 219	c(1,5) = 198
c(2,1) = 213	c(2,2) = 227	c(2,3) = 231	c(2,4) = 226	c(2,5) = 213
c(3,1) = 214	c(3,2) = 233	c(3,3) = 240	c(3,4) = 229	c(3,5) = 216
c(4,1) = 214	c(4,2) = 230	c(4,3) = 233	c(4,4) = 229	c(4,5) = 212
c(5,1) = 201	c(5,2) = 226	c(5,3) = 228	c(5,4) = 225	c(5,5) = 196

2

- 5 (a) Write short note on Quantum Mechanics and Quantum Dots (06)
 - (b) Explain in brief about X ray Diffraction (07)
 - (c) How does the pH of the medium affect the biomolecules nanoparticle (07) interaction?
- Three different sized nanoparticle from a nano operation settle through the (20) air. Assume the particles are spherical having the diameter 0.4, 1 and 400 µm. Calculate the settling velocity of a particle moving in a gas stream and determine how far each fall in 50 sec. Air temperature and pressure: 70 °F and 1 atm.

Use Cunningham correction factor = 1.415. To calculate the settling velocity of a particle moving in a gas stream for particles diameter less than $1 \mu m$.

$\rho_{p}=2309~kg/m^3$	$\mu_{\text{(AIR)}} = 2.1 \times 10^{-5} \text{ kg/m.s}$
$\rho = 1.2 \text{ kg/m}^3$	$g = 9.8 \text{ m/s}^2$
C = 1.415	