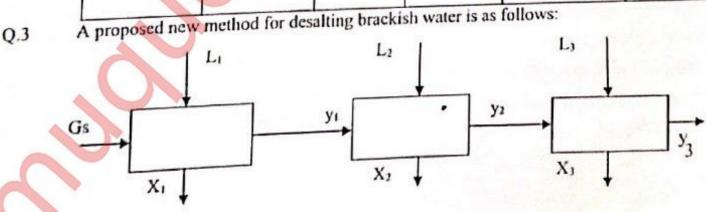
BE (chem) sem-VIII CBSGS. Q.P.Code:18093 May-2017 Duration 03 Hr Total Marks 80


N.B. 1) Question No.1 is compulsory

- 2) Answer any three out of five question
- 3) Assume suitable data wherever necessary and state them clearly
- 4) Figure to the right indicate full marks

Q.1			
a)	Explain in details Equation of state (EOS) model	1	05
b)	Explain overall strategy for developing unit model	V.	05
c)	List out the various methods of optimization and explain in brief.		05
d)	Model non ideal flash column.		05

Q2 Calculate the bubble point temperature in flash column for the mixture with components, 20 flowrates, boiling points & Antoine coefficients given in the following table:- Total Pressure is 1 bar, For Antoine equation P is in mm Hg, T is in ⁰K where 99% of Benzene is recovered in the overhead and 99.5% of xylene to be recovered in bottom.

Component	f (mole/hr)	Boiling Point	A	B*	С
Benzene	30	353	15.9008	2788.51	-52.34
Toluene	50	383	16.0137	3096.52	-53.67
O-xylene	40	418	16.1156	3395.57	-59.44

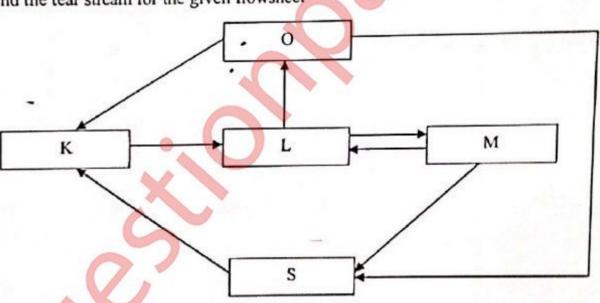
Turn Over

20

The salt is to be absorbed on to a patented solid adsorbent in a three stage process as shown above. Determine the distribution of pure adsorbent so as to minimize the total flow rate required. The equilibrium relation is given by $y=x^2/100$

Gs= 1000 kg/hr of water

X= Kg of salt per kg of adsorbent


y= Kg of salt per Kg of water

 $y_0=0.03$ and $y_3=0.0001$

Use Newtons method and show at least two iterations.

In a absorption column vapour consist of 10 mol/s air and 01 mol/sec acctone. Acetone is to be absorbed in water(solvent) Solvent temperature is of 300K and pressure of 10 bar .Recovery of acetone r=0.95. Absorption factor 1.4.Calculate required water flow rate, No. of stages and flow rates of existing stream Antonie Constant Water A= 8.07131 B= 1730.63 C= 233.426 Acetone A=4.42448 B=1312.253 C= -32.445

Find the tear stream for the given flowsheet Q.4(b)

Solve by Lagrangian Method

10

10

 $S=2X_1X_2+2X_2X_3+X_1X_3$

 $X_1X_2X_3=32, &X_1, X_2, X_3>0$

Using Newton's facthod along with Armijo line search method to solve following b)

10

 $J_1 = 2x_1^2 + x_2^2 - 6 = 0$

 $f_2 = x_1 + 2x_2 - 3.5 = 0$

Turn Over

14228 / T1836 B.E.(CHEMICAL ENGG)(SEM VIII) (CBSGS) MODELLING, SIMULATION & OPTIMIZATION (MSO)

Q.P.Code:18093

20

3

06

Feed streams with pure species A and B are mixed with a recycle stream in a CSTR, where the following reactions take place:

$$A+B\rightarrow C+D$$

$$A + C \rightarrow 2E$$

$$B + E \rightarrow F$$

F is a gaseous product, D is a solid waste, C is a by-product while E is the main product. The plant consists of a reactor, a filter and two distillation columns. 98% of high boiling E is recovered from the first column, while volatile C is separated in the second column. Due to formation of an azeotrope, some of component C (equivalent to 10 wt% of component E) is retained in the column bottoms. 90% of this bottom product is recycled, while the rest is purged. Construct a Williams-Otto flow sheet and develop the process equations.