BE/ CBGS/VIII/ CHEM/MSO

Q.P. Code: 733901

(3 Hours)

[Total Marks: 80

N.B.: (1) Question No.1 is compulsory.

- (2) Answer any Three out of remaining Five questions.
- (3) Assume suitable data wherever required and state them clearly.
- (4) Figures to the right indicate full marks.

1. Solve any Four:

- (a) Explain types of flow sheet simulation.
- (b) What are the assumptions to be made for simulation in ideal phase.
- (c) Explain methods to solve non linear equations.
- (d) List out various methods of optimization and explain in brief. 5
- (d) Write with specific applications, types of chemical process simulators. 5
- 2. Consider the separation of B. T. X, mixture in bubble point feed to distillation column, where 99% of B is to be recovered in the overhead and 99.5% of X is to be recovered in bottom stream. The bubble point feed is at temperature of 386 K and 1bar pressure. Find out the composition of overhead and bottom streams, using data:

Component (k)	Flow rate in feed (k mole/hr)	Antone constant		
		Ak	Bk	Ck
Benzene	20	15.9008	2788.51	-52.34
Toluene	30	16.0137	3096.52	-53.67
Xylene	50	16.1156	3395.57	-59.44

3 (a) Solve graphically the following problem (Lagrange multiplier method) 1 Maximize $Z = 2x_1 \neq 3x_2$

10

Subject to:

$$x_1^2 + x_2^2 \le 20$$

$$x_1^2 + x_2^2 \le 8$$

$$x_1, x_2 \ge 0$$

(b) Solve the following problem by Kuhn Tucker condition

 $Z = 10x_1 + 4x_2 - 2x_1^2 - 3x_2^2$

10

$$2x_1 + x_2 \le 5$$
$$x_1, x_2 \ge 0$$

TURN OVER

30/5/2016

BE/ CBGS VIII CHEMI MSO

10

Q.P. Code: 733901

2

4. (a) Using Newton's method with an Armijo line search, solve the following system of equation:

$$f_1 = 2x_1^2 + x_2^2 - 6 = 0$$

$$f_2 = x_1 + 2x_2 - 3.5 = 0$$

(b) Solve the fixed point problem given by:

$$x_1 = 1 - 0.5 \exp(0.7(1 - x_2) - 1)$$

 $x_2 = 2 - 0.3 \exp(0.5(x_1 + x_2))$

Using direct substitution method starting from $x_1 = 0.8$ and $x_2 = 0.8$. Estimate the maximum eigen value.

A flash unit operator at 1atm and 373 K. A liquid feed comprised of Methanol, Propanol and Acetone with an enthalpy of -264.6 kJ/mol enters the unit. No external heat is supplied. Determine the vapour traction (V/F) based on the following data. The coefficients to determine the specific heat in J/mol-k are given in table. The reference temperature is 298 K. The enthalpy of formation at standard state and the heat of vaporization at 373 K are given in kJ/mol. The vapour and liquid phase compositions are represented as mole fractions.

Methanol	Propanol	Acetone
	2.47	6.30
	0.33	0.26
	-1.85×10^{-4}	-1.25 x 10 ⁻⁴
		2.04 x 10 ⁻⁸
	-303	-248
-	41.47	26.16
	0.23	0.37
	0.05	0.56
	Methanol 21.14 0.07 2.59 x 10 ⁻⁵ -2.85 x 10 ⁻⁸ -239 32.39 0.40	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

TURN OVER

BE CBGS VIII / CHEM / MSO

Q.P. Code: 733901

3

6. Feed streams with pure species A and B are mixed with recycle stream enter CSTR, where following reactions takes place:

 $A + B \rightarrow C$ $C + B \rightarrow P + E$ $P + C \rightarrow G$

Hear C is an intermediate, P is main product, E is bi product and G is oily waste. The plant consist of reactor, a heat exchanger to cool reactor effluent, a decanter to separate waste product G from reactants and other products and a distillation column to separate product P. Due to formation of an azoetrope some of product (equivalent to 10 wt% of mass flow rate of component E) is retained in the column bottom most of the bottom product is recycled to reactor and rest is purged. Construct a William otto flowsheet and davelop the process equation without energy balance.