Paper / Subject Code: 52508 / 6) Advanced Transport Phenomenon

1T00518 - B.E.(CHEMICAL)(SEM VIII) (CBSGS) / 52508 - 6) Advanced Transport Wednesday, December 11, 2019 10:30 am - 01:30 pm 78218 Phenomenon

Time: 3 Hours Max Marks: 80

- Question No. 1 is compulsory. N.B. 1
 - 2 Attempt any **three** out of remaining **five** questions.
 - 3 Assume any suitable data if necessary and indicate it clearly.
- Q. 1 Answer the following (any four)
 - Write the different equations for determination of viscosity of liquids and gases. a.
 - 5 Explain diffusion. What factors may cause diffusion to occur? b.
 - Explain temperature and pressure dependence of thermal conductivity. c.
 - d. Explain Newtons law of viscosity in three dimensional form.
 - Estimate the viscosity of N_2 at 50^0 C and 854 atm, given M = 28 gm/gmole, $P_c =$ e.
- 33.5atm and T c = 126.2 K. 10
- Q. 2 Derive the equation for Newtonian fluid over an inclined plate a.

Heavy oil is passed through a pipe of 5.08×10^{-2} m diameter. The pressure drop 10 b. over the pipe is 68.958 kN/m². The viscosity of oil is 200 Cp and density is 800 kg/m³. The length of the pipe is 3.048 m. Calculate the volumetric flow rate of oil in lit/min.

Calculate and plot momentum flux profile across the pipe.

- Derive an expression for Heat conduction with an electric heat source. **10** Q. 3 a.
 - A current of 250 amp is passing through stainless steel wire having a diameter of 10 b. 5.08 mm. The wire is 2.448 m long and has a resistance of 0.0843 Ω . The outer surface held is constant at 427.6 K. The thermal conductivity is 22.5 W/m K. Calculate the centrelinetemperature at steady state.
- Q. 4 Calculate the thermal conductivities of NO and CH₄ at 300 K and atmospheric 10 a.

(Given: R = 1.987 cal/gmol.K)

Component	M	C_{p}	$\mu \times 10^{-7}$ $\sigma \left(A^{-0}\right)$	$\Omega_{\mu} = \Omega_{k}$
CH4	16.04	8.55	1116 3.78	1.186
NO	30.01	7.15	1929 3.47	1.0908

10

- b. A copper wire 10 mm diameter and 4.6 m long has a voltage drop of 0.6 volts, find the maximum temperature in the wire if the ambient air temperature is 298.15 K and the heat transfer coefficient h is 32.37 W/m² K Lorenz constant for copper = $223 \times 10-8 \text{ volt}^2/\text{K}^2$
- Thermal conductivity of copper at 298.15 K = 384.1 W/m K

Q. 5 Derive an expression for Diffusion through stagnat gas film. 10 a. 10

- A value of DAB = 0.151 cm²/sec has been found for the system CO₂-air at 293K b. and latm, Calculate DAB at 1500K by the following methods. a) Slattery Equations, b) Chapman Enskog Equation Data: For non polar gas pairs, b = 1.823, $(\Omega D^{AB})_{1500} = 0.734$, $(\Omega D_{AB})_{293} = 1.047$
- Derive an expression for diffusion diffusion with heterogeneous chemical 12 Q. 6 a. reaction.
 - Estimate D_{AB} for the system Argon-Oxygen at 293.2 K and 1 atm pressure. 08 Ð.

Component	M	Tc	Pc
A (Argon)	39.94	151.2	48.0
B (Oxygen)	32.00	154.4	49.7
