(3 Hours) [Total Marks: 80]

- N. B. (1) Question No. 1. is compulsory.
 - (2) Attempt any three (3) questions from remaining five (5) questions.
 - (3) Assume suitable data whenever required.
 - (4) **Figures** to **right** indicate **full** marks.
- **Q.1** Answer the following (any **four**):

(20)

- (a) Write a note on Bonded Phase Chromatography.
- (b) Write a note on Molecular Sieves as adsorbent.
- (c) What is meant by membrane? Give its classification based on driving force.
- (d) Give methods of Foam Formation, Calescence and Collapse.
- (e) Explain Tap Fill method of packing for rigid solids in LC columns.
- (f) Explain regeneration and activation of activated carbon.

Q.2

- (a) Explain Pressure Swing Adsorption (PSA) technology with appropriate examples. (10)
- (b) List different modules used in membrane processes and explain Plate and Frame module in detail. (10)

Q.3

(a) Derive the relation for liquid permeation process in 'Dialysis' (10)

i.e.
$$N_A = \frac{C_1 - C_2}{\left(\frac{1}{kC_1}\right) + \left(\frac{1}{kC_1}\right) + \left(\frac{1}{P_m}\right)}$$

(b) Discus the construction and working of any one type of flotation equipment used for mineral processing. (10)

Q.4

- (a) Explain Liquid -Liquid Chromatography in detail using following points:
 - i. Advantages over other LC methods
 - ii. Essential features
 - iii. Column packing
 - iv. Partitioning phases and other separation variables
 - v. Applications

(10)

(b) A dialysis process is being designed to recover a certain solute from dilute solution having solute concentration 2.0 x 10⁻² kg mol/m³ through a membrane to a solution having solute concentration 0.3 x 10⁻² kg mol/m³. The membrane is 1.59 x 10⁻⁵ m thick. The mass transfer

coefficients in upstream and downstream are 3.5×10^{-5} m/s and 2.1×10^{-5} m/s respectively. (10) Calculate

- i. The permeability when steady state flux is 2.492×10^{-8} kg mol solute /h.m²
- ii. Diffusivity of solute through membrane when distribution coefficient is 0.7
- iii. The individual resistances and total resistance.

Q.5

(a) Explain following methods to prepare Composite Membrane:

(10)

(10)

- (i) Interfacial polymerization
- (ii) Dip Coating
- (c) An industrial wastewater having a TOC of 200 mg/L will be treated by GAC for a flow rate of 200 m³/day. Allowable TOC in the effluent is 10 mg/L. Design an adsorption column using scale up approach with following Pilot Plant Data.

Q = 50 L/hr

Column diameter = 95 mm

Column depth (packed bed) = 175 cm

Packed bed carbon density = 400 kg/m^3

V_{breakthrough}= 8400 L

 $V_{\text{exhaustion}} = 9500 L$

(20)

- **Q.6** Write short note on the following:
 - (a) Nano-Filtration
 - (b) Ion Exchange Chromatography
 - (c) Simulated Moving Bed Adsorber
 - (d) Refractive Index detector in LC
