B.E- VII Sem-them.

Process Equipment Designs/III/CBGS/CHEM/PED.

is

(4 Hours)

[Total Marks: 80

N. B.: (1) Question No.1 is compulsory.

- (2) Attempt any three questions from question Nos. 2 to 6.
- (3) Assume any suitable data wherever required.
- (4) Draw figures wherever needed.
- (5) Figures to the right indicate full marks.
- 1. Write short notes on any four.
 - (a) Difference between U -Tube and fixed tube heat exchanger.
 - (b). Autofrettage
 - (c) Packed distillation column
 - (d) Design considerations for crystallizers
 - (e) Explain different methods of fixing tubes to tube sheet.
- 2. Design a U-tube heat exchanger for the following data:
 - (1) Shell side:

Design pressure= 0.55 N/mm²

Permissible stress for shell material, Carbon steel= 100 N/mm²

Standard torispherical head with knuckle radius as 6% of crown radius

25% cut segmental baffles are provided

Gasket on shell side- Flat metal jacketed asbestos filled

Gasket factor= 3.75

Gasket seating stress= 53.7 N/min

(2) Tube side:

Number of tubes= 60

Tube outside diameter= 19 mm

Design pressure of tube side fluid= 2.0 N/mm²

Permissible stress of tube material = 120 N/mm²

Tube pitch =square

(3) Channel and channel cover:

Material of construction - carbon steel

Joint with tube sheet- Ring facing

Ring gasket width = 18 mm

Gasket factor = 5.5

Gasket seating stress= 126 N/mm²

Allowable stress for bolt material = 140 N/mm²

TURN OVER

MD-Con. 7992 -15.

BE/VII /CBGS/CHEM (PC) QP Code: 5878

(a) Desi	gn	*
(i)	Shell (diameter and thickness)	3
(ii)	Head	2
(iii)	Flange joint between shell and tubesheet	3
(iv)	Flange joint between channel and tubesheet	3
(v)	Tube sheet thickness	2
(vi)	Channel and channel cover thickness for a flat cover	2

(b) Draw to a recommended scale the assembly drawing of the above given U-Tube heat exchanger.

3. (a) Write the detail design procedure of shell wall of a tall column for varying thickness. Design must include all the stresses working on fall vessel.

(b) Discuss various ways of making high pressure vessel.

5

15

4. Design a short tube calendria type evaporator with the following data assuming that it has wire mesh for entrainment separation.

external pressure 0.1 N/mm2 Evaporator drum under vacuum Amount of water to be evaporated, 3000 kg/hr 350m2 Heating surface required 0.15 N/mm² Steam pressure $\sqrt{995}$ kg/m³ Density of liquid 0.83 kg/m^3 Density of vapour Effective Tube length 1500 mm 40 mm Tube outside diameter 1.8 mm Tube thickness

Tubes laid on triangular pitch

Assume central down(take pipe as 40% of the total tube cross sectional area

Permissible stress for low carbon steel = 98 N mm²

Modulus of stasticity for low carbon steel= 19 x 104 N/mm²

Modulus of elasticity for brass = 9.5 x 104 N/mm²

(a) Design the

(i)2_	Calendria (Diameter and thickness)		4
X (ii)	Tubesheet thickness	-	4
(iii)	Vapor drum (Diameter and thickness)		4
(iv)	Top torispherical head	L.	2

[TURN OVER

MD-Con. 7992 -15.

BE/VII/CBGS/CHEM/PED

QP Code: 5878

1

- (b) Draw to a recommended scale the sectional front view of the above designed calendria.
- 5. (a) Show the symbols for the following components:

5

- (i) Tray column
- (ii) Filter press
- (iii) Heat Exchanger
- (iv) Autoclave
- (v) open tank
- (b) Write notes on
 - (i) Process flow diagram
 - (ii) Piping and Instrumentation Diagram
- (b) Estimate the optimum pipe diameter for a water flow rate of 10 kg/sec at 20°C. Carbon steel pipe is used. Viscosity of water is 1.1 x 10⁻³ Ns/m². Density of liquid is 990 kg/m³. Also find whether flow is laminar or turbulent
- 6. (a) A high pressure compound cylinder consists of an inner tube of inside diameter as 200mm and outside diameter as 250 mm. A tube of 300 mm external diameter is shrunk fit into it. The contact pressure in the 2 tube surfaces after shrink fit is 7.85 N/mm². The combination of the cylinder assembly is then subjected to an internal pressure of 83 N/mm². Design the original dimensions required for the tube and determine the stress distribution. If the co-efficient of thermal expansion is 12 x 10-6/°C determine what temperature the outer cylinder should be heated to achieve the necessary shrinkfit. E = 2 X 10⁵ N/mm²
 - (b) Plot the stress distribution along the wall of the above designed high pressure vessel.

8

12