B. E-<u>VII</u> S'em- B'omed

Very Large Scale Integrated Circuits, 18 BE/VII /CBG S/BM/VISIC OP Code: 6009

			Q1 Couc.	
			(3 Hours) [Total Marks :8	30
	N.B.	: (1	1) Question no. 1 is compulsory.	
		(2	2) Attempt any three questions from the remaining five questions.	
	7	(3	3) Draw a neat labelled diagram wherever necessary.	
		(4	4) Assumptions should be clearly stated.	J.F.
1	. (a	a)	What are the different data types used in VHDL	Kar.
	(t	b)	Write VHDL code for 2:4 decoder using process statement in behavioral style 5	
			modelling.	
	(0	c)	Explain surface inversion condition in MOS structure using band diagram 5	
	(0	d)	What are the different data types used in VHDL Write VHDL code for 2:4 decoder using process statement in behavioral style 5 modelling. Explain surface inversion condition in MOS structure using band diagram 5 Explain latch up in CMOS circuits and ways to reduce it Draw the simplified block diagram of XC4000 series configurable logic 16 blocks(CLB's) and explain briefly each subblocks.	
2	. (8	a)	Draw the simplified block diagram of XC4000 series configurable logic 10	0
			blocks(CLB's) and explain briefly each subblocks.	
	(t	b)	Write VHDL code for 4 bit full adder.	0
3	. (a	1)	Explain briefly the different modeling techniques used in VHDL. 5	
	(b)	Differentiate between constant voltage and constant field scaling used in VLSI 7	
	(0	:)	Draw circuit diagram, stick diagram and layout using 2-based design rule for 8	
			2-input CMOS NOR gate, use proper colour coding	
				-
4.	(a)	Calculate the threshold voltage at room temperature for V _{SB} = 0 for a PMOS 7	
		1	transistor fabricated on n-type substrate with bulk doping density of	
		1	$N_D = 10^{16} / \text{cm}^3$, gate doping density (n-type poly) of $N_D = 10^{20} / \text{cm}^3$,	
			$Q_{ox} = q \times 4 \times 10^{10} / \text{cm}^2$ and oxide thickness $t_{ox} = 0.1 \mu \text{m}; \epsilon_{si} = 11.7 \times \epsilon_0, \epsilon_{ox} = 3.97 \times \epsilon_0$	
		•	$\epsilon_0 = 8.85 \times 10^{-14} \text{F/cm.} \text{T} = 30^{\circ} \text{C.}$	
	(b)			5

- (c) Draw stick diagram and layout of 2-input NAND gate using n-MOS depletion 8 load. aspect ratio for the drivers is 2:1 and load is 4:1
- 5. (a) Explain the twin tub process of fabrication of CMOS inverter in detail. 10
 - (b) Explain-wafer processing, oxidation and photo lithograhy used in semi conductor 10 fabrication technology in detail.

· [TURN OVER

MD-Con. 10770-15.

- (a) Draw the circuit diagram of CMOS inverter and explain various regions of 10 6. operation of the transistors based on the transfer characteristics.
 - (b) Calculate the noise margins of the the following depletion-load inverter circuit. 10

$$V_{DD} = 5.0V$$

$$V_{\text{TO,driver}} = 1.0 \text{V}$$
 $V_{\text{TO,load}} = -3.0 \text{V}$

$$(W/L)_{driver} = 2, (W/L)_{load} = \frac{1}{3}$$

$$k_{n,driver}^1 = k_{n,load}^1 = 25\mu A/V^2$$

abstrate on the same of the sa $\lambda = 0.4 \text{V}^{1/2}$, where λ is body effect coefficient/substrate coefficient $\phi_F = -0.3 \text{V}$

$$\phi_{c} = -0.3V$$