BE/Sem VIII/CBSGS/AUTO/MJ2019/14-05-2019 Paper / Subject Code: 52202 / Vehicle Dynamics | | | [Time: 3 Hours] | Marks:80] | |-----|----|---|-----------| | | | Please check whether you have got the right question paper. N.B: 1. Draw neat sketches whenever necessary. 2. Q. No. 1 is compulsory. 3. Solve any three questions from the remaining four questions. 4. Assume suitable data wherever necessary. | | | Q.1 | | Answer any four of the following: | 20 | | | | a) Derive an equation for basic stability derivatives b) Explain special properties of double conjugate points. c) Explain Maurice Olley's criteria for suspension frequency. d) Explain the terms: Jounce, rebound, body roll, roll steer and power squat e) What do you mean by Anti pitch or anti squat geometry? Explain. f) What is Cornering stiffness and how it is related to vehicle performance? | | | Q.2 | a) | Explain the effect of wheel alignment angle on stability and comfort of vehicle. | 10 | | | b) | Explain passive, semi active and active suspension. | 10 | | Q.3 | a) | Explain wheel wobble and wheel shimmy. | 08 | | | b) | Find the position of double conjugate points and pitch and bounce frequencies of passenger car from following data: 1) Sprung mass – 1450 kg 2) Radius of gyration – 1.22 m 3) Wheel base – 3.05 m 4) Front suspension spring rate – 33 KN/m 5) Rear suspension spring rate – 35.75 KN/m 6) Position of CG from front axle – 1.37 m. | of a 12 | | Q.4 | a) | Prove that, C12 = C21 for equalizing type suspension. | 10 | | | b) | What is roll center? Locate roll centers for any four types of suspension systems. | 10 | | | | Paper / Subject Code: 52202 / Vehicle Dynamics | | |-----|----|---|----| | Q.5 | a) | Write a note on aerodynamic forces and moments. | 10 | | | b) | Find the curvature response per degree of steering angle at 60 kpH. The data given as: Mass of the vehicle – 1200 Kg Wheel base – 2.4 m Position of CG from front axle – 1.25 m Cornering stiffness of front tyres – 60 KN/rad Cornering stiffness of rear tyres – 65 KN/rad | 10 | | Q.6 | | Write short note on (Any four): i) Variable Rate coil spring ii) Interconnected suspension iii) Jack knifing of articulated vehicles iv) Camber thrust and its relevance to vehicle performance v) Influence of front wheel drive on steering | 20 |